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Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization
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Dynamic models for facet formation often employ a regularization of the surface energy based on a corner
energy term. Here we consider the effect of this regularization on the equilibrium shape of a solid particle in
two dimensions. Using matched asymptotic expansions we determine the explicit solution for the corner shape
in the presence of the regularization. Our results show that for a class of surface energy anisotropy models the
regularized solution approaches the classic sharp-corner results as the regularization approaches zero. The
results validate the use of the regularization in numerical calculations for the equilibrium problem. Finally, a
byproduct of the analysis is anexactsolution for the equilibrium shape of a semi-infinite wedge in the presence
of the regularization.
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I. INTRODUCTION

The role of surface energy anisotropy in determining
equilibrium shape of a solid particle in a liquid is a class
materials science problem that has been studied for ov
century. Herring@1,2# reviewed the work on the so-calle
Gibbs-Curie problem for the equilibrium shape of a so
particle, including Wulff’s construction@3# of the equilib-
rium shape and corrections and extensions of Wulff’s pro
Post-dating Herring, many elegant alternative description
the equilibrium crystal shape have been developed, suc
the tangent angle formulation in Burton, Cabrera and Fr
@4#, the Frank plot@5#, the double-tangent construction o
Cabrera@6,7#, the Cahn-Hoffmanj vector@8#, and Andreev’s
construction@9#. A modern perspective of the equilibrium
crystal shape problem appears in books such as in Refs.@10#
or @11#.

Following Refs.@1,2#, consider the two-dimensional cas
where the angular orientation of the surface normal isu and
the surface energy isg(u). Depending on the details o
g(u), the equilibrium crystal shape~‘‘Wulff shape’’ ! can
have flat and/or curved sides which are connected smoo
or by corners~Fig. 1 illustrates the case where the sha
consists of curved sides connected by corners!. Flat sides
correspond to facets and are possible ifg(u) has cusps~local
minima whereg is not differentiable!. Corners can occu
when it is energetically favorable to exclude high ener
orientations, which occurs when the ‘‘surface stiffness’’g
1g9 is negative.

While the equilibrium problem is well understood, impl
mentation of anisotropy in models for thedynamicsof evolv-
ing surfaces creates two difficulties, the first due to cusp
g(u) and the second due to ill posedness when the sur
stiffness is negative. The presence of cusps ing(u) depends
on whether the system is above the thermal roughening t
perature or not. We restrict our attention here to the c
where the surface is thermally rough and cusps are
present. Even without the presence of facets, the issue o
posedness due to orientations with negative stiffness m
the dynamic model intractable unless the evolution mode
regularized. Without a regularization, a planar surface
ented so that it has negative stiffness will be unstable
1063-651X/2004/69~1!/011603~10!/$22.50 69 0116
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surface wrinkling with a growth rate for the instability tha
diverges as the length scale of the wrinkling goes to z
@12,13#. In numerical simulations this ill posedness wou
manifest itself as ‘‘blow-up’’ on the finest scale. A regulari
ing term smooths the small-scale instability and removes
ill posedness.

One approach that has been used extensively in the lit
ture for regularizing the ill-posed problem is to add a high
order term to the surface energy@13–27#. The main idea is to
include an additional term in the surface energy, which
nalizes sharp corners and makes them rounded on a s
length scale. A simple model for the two-dimensional pro
lem is @1,13,14,17,18#

g5g0~u!1bk2, ~1!

wherek is the curvature of the surface andb is taken as an
isotropic ‘‘corner energy’’ parameter. Sharp corners cor
spond touku→` and thus make the effective surface ener
g divergent. In the equilibrium problem, minimization of th

FIG. 1. ~Color online! Equilibrium crystal shape forg(u) given
by Eq. ~14! with a50.5 andm51. The crystal shape is shown a
solid ~red! curves, and the unphysical ‘‘ears’’ are shown as dash
~blue!.
©2004 The American Physical Society03-1
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effective surface energy should lead to corner roundi
Since a large curvature at the corner has high energy bec
of the regularization, and a small curvature at the corner
high energy because of a larger area with orientations w
larger surface energy, the amount of corner rounding
minimizes the energy is determined by a compromise
tween these two competing energy penalties.

This regularization was first proposed by Herring for t
equilibrium problem in Ref.@1#. Herring determined a crud
order-of-magnitude estimate of the effect of this regulari
tion by replacing the corner between two facets with
rounded corner with constant radius of curvature. The re
larization was first suggested for the dynamic problem
Ref. @14# and then studied in Ref.@13# ~see also Refs.@17#!.
This model or a linearized version of it has been used in
dynamic models of facet formation in Refs.@15,16,18–
21,23–25#, calculation of equilibrium island shapes
strained epitaxial films@28#, and in equilibrium and dynamic
calculations of void shapes in stressed solids@26#. In Ref.
@18# the regularization is derived from the interaction
atomic-scale steps near a corner. The thermodynamics of
regularization and its correct representation in thr
dimensional models involving surface diffusion and pha
transitions has appeared in Ref.@22#, and Ref.@27# includes
this regularization in a comprehensive general treatmen
thermodynamics and kinetics of evolving interfaces.

The plausibility of the regularization for rounding corne
is clear, however, to our knowledge there has not yet bee
concrete description of how this regularization affects
basic problem of equilibrium crystal shapes. It is expec
that asb→0 we should recover the Wulff shape, but sin
the additional higher-order term is a nonlinear singular p
turbation it is not obvious that theb50 results are recovere
in the limit of b→0. Herring’s original work@1# suggested
that adding a curvature dependence to the surface en
would round corners of the Wulff shape. In this work, ho
ever, the true equilibrium shape was not determined. Rat
an order-of-magnitude estimate was obtained by assum
that the corner would have a constant radius of curvat
From energy minimization of corners with constant radius
curvature it was found that the radius of curvaturer was
proportional tob1/2. Technically, however, imposing a con
stant radius of curvature at the corner does not satisfy
conditions of equilibrium for the regularized problem, and
the question of the actual corner shape was not resolved

More recent work has studied the regularization in m
detail, but has not addressed the equilibrium shape prob
directly. DiCarloet al. @13# was the first to study the regu
larization extensively, but the work focuses on the regu
ization in the context of dynamics for an evolving interfac
Liu and Metiu @16# discuss the equilibrium problem in th
absence of regularization, and use the regularization in
dynamic problem, but do not consider the effect of the re
larization for the equilibrium problem. Siegelet al. @26# de-
termine the equilibrium shape of a void numerically for
particular choice for the anisotropyg0(u)5g* @1
10.15 cos(4u)# and show that the Wulff shape is recover
as the regularization is reduced to zero. While it is expec
that similar results would hold for other values of the para
01160
.
se

as
th
at
-

-

u-
n

e

his
-
e

of

a
e
d

r-

rgy

er,
ng
e.
f

e

e
m

r-
.

e
-

d
-

eters and other functional forms for the anisotropy, such
sults have not been demonstrated in general, so it is not c
if the Wulff shape is always recovered for any form of th
anisotropy.

The scope of the present work is to use asymptotic an
sis to show in general that there are no surprises regar
the effect of this regularization on the equilibrium shap
even though it enters as a nonlinear singular perturbat
For a broad class of anisotropies, the Wulff shape is alw
recovered as the regularization approaches zero. Moreov
central result of the work is an explicit solution for the sha
near the corner in the presence of the regularization, as
as a description of the entire equilibrium shape. Finally,
deriving these results we also obtain theexact regularized
solution for the semi-infinite wedge geometry.

For clarity, we restrict our attention to a two-dimension
system corresponding to a solid particle surrounded b
liquid ~or vapor! ~see Fig. 1!. The generalization to three
dimensions is not trivial and is not attempted here. We a
restrict ourselves to the case whereg(u) is sufficiently
smooth~twice differentiable!, so we do not consider the cas
whereg has cusps and the equilibrium shape has facets

The equilibrium shape is constructed using match
asymptotic expansions@29#. Away from a corner the regular
ization term is not important and the shape is governed
the Wulff construction. Near the corner, the local behavio
governed by a nonlinear differential equation in which t
corner energy plays a controlling role. The nonlinearity
the corner problem poses a challenge for the constructio
solutions which round the corner and match the appropr
‘‘Wulff’’ angles of the outer solution. However, we show tha
the corner problem can be reduced to a linear doub
eigenvalue problem, and the only solution to this eigenva
problem that corresponds to a rounded corner is the
which precisely matches the Wulff angles at the corner. T
resulting composite solution consists of the rounded cor
solution near the corner and the Wulff shape away from
corner. The results mean that for a class of surface en
anisotropies the regularized solutions recover the W
shape as the regularization goes to zero. The convergen
the asymptotic results also provides a validation for using
regularization in computations of the equilibrium shape; n
merical calculations should converge to the Wulff-shape p
vided the regularization is sufficiently small, as seen in
numerical example of Ref.@26#.

The asymptotic solution near the corner is similar to so
of the analytical results for the dynamics of corners in Re
@23–25# ~see also related work in Refs.@18–21#!. The main
difference is that here the fully nonlinear regularization
employed in the corner region, whereas in Refs.@23–25# the
model equation contains only the linearized regularizat
term. When the regularization term is linearized, as is app
priate for a small-slope theory of an evolving interface, the
is a strong parallel between slope selection at a facet co
and spinodal decomposition in the Cahn-Hilliard equat
and the convergence of the regularized solutions to the z
regularization solution is easily established@25# ~see also the
discussion in Ref.@18#!. The analysis presented here exten
the small-slope results to the case where nonlinear effects
3-2
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important at the corner~but only for the case of equilibrium!.
Another work related to the corner problem in the prese
of the regularization is Ref.@30#, where existence and
uniqueness results were demonstrated for a semi-infi
wedge with a rounded corner and prescribed far-field ori
tations. The paper is primarily concerned with the dynam
of evolving corner solutions, but one part of the work appl
to the equilibrium problem and is potentially applicable
the local corner problem. However, the work is restricted
orientations for which the stiffness is negative and thus
work does not apply to equilibrium crystal shape problem
which the corner orientations are stable and with posit
stiffness.

The rest of this paper is organized as follows. In Sec
we formulate the problem in nondimensional variables.
Sec. III we review the Wulff shape obtained by setting t
corner energy parameter to zero. In Sec. IV we use matc
asymptotic expansions to construct the equilibrium sh
when the corner energy parameter is small. We find exp
solutions for the corner behavior and demonstrate that it
always match to the corner angles prescribed by the W
shape. In Sec. V we present the solution for a semi-infin
wedge, obtained as a by-product of our analysis. Finally
Secs. VI and VII we discuss and summarize the main res

II. FORMULATION

Let the solid surface be described by a closed curve
(x* ,y* ) space, parametrized by the orientation angleu and
the arclengths* , where s* traverses the boundary of th
solid with the solid on the right andu is measured clockwise
from a fixed reference orientation, say (0,1). The local c
vature of the surface is taken as positive for a solid bum
which is given by

k* 51
du

ds*
~2!

when the solid is interior to the boundary~but includes a
minus sign when the solid is exterior to the boundary!.

The total surface energy per unit length of the surface
described by an anisotropic surface energy densityg* (u)
and a corner regularization12 b* k

*
2 @1,13,14,18#,

g̃* 5g* ~u!1 1
2 b* k

*
2 . ~3!

The total energy of the surface is

E* 5E g̃* ds* . ~4!

Minimizing the total energy of the surface subject to t
constraint of fixed solid areaA* enclosed by the curve give
the modified form of Herring’s equation@31# for the chemi-
cal potentialm* at the surface of the solid, which here in
cludes the effect of the regularization@13#,

m* 5G* ~u!k* 2b* C* ~k* !, ~5!

where
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G* ~u!5g* ~u!1g
*
9 ~u! ~6!

is the surface stiffness and

C* ~k!5
d2k*
ds

*
2

1 1
2 k

*
3 ~7!

is a corner energy term. At equilibrium the surface satisfi
m* 5const, and bounds a solid with prescribed areaA* .

Without loss of generality we can restrict our attention
the casem* >0. The casem* ,0 is equivalent to the cas
m* .0 under the transformationsm* →2m* and k* →
2k* , i.e., converting an exterior solid~void! domain to an
interior ~drop! domain or vice versa. The inversion symmet
of interior ~drop! and exterior~void! shapes is well known in
the absence of the regularization term. Here we note that
symmetry is also preserved in the presence of the regular
corner term.

In the following derivation of equilibrium shapes, w
shall consider a general form forg* (u). We only require
that g* (u) and its derivatives up tog

*
9 are continuous. In

some instances, it is useful to illustrate the results with
specific example. In such cases we consider the proto
model for surface energy with a fourfold anisotropy,

g* ~u!5g0@11a cos~4u!#, ~8!

where 0<a,1 measures the degree of anisotropy.
We define a length scaleL as a characteristic radius of th

solid region fromA* 5pL2. Let g0 be a characteristic value
of the surface energy. In nondimensional form, the equi
rium condition becomes

m5G~u!
du

ds
2bFd3u

ds3
1 1

2 S du

dsD
3G , ~9!

where

G~u!5G* ~u!/g0 , ~10!

s5s* /L, ~11!

b5b* /~g0L2!, ~12!

and

m5m* L/g0 . ~13!

In the above equations, the parameterb measures the rela
tive contribution of the corner energyb* k

*
2 ;b* /L2 to the

surface energyg;g0. The nondimensional area constraint
A, and in nondimensional form the surface energy model
the example is

g~u!511a cos~4u!. ~14!

Finally, the value ofm is unspecified, but is determined s
that the area of the solid particle satisfies the area constr
3-3
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III. SOLUTIONS IN THE ABSENCE OF REGULARIZATION

The equilibrium shape problem whenb50 has been
solved from a variety of approaches@1–9#. We summarize
the results here in some detail, as they play an important
in the regularized case discussed later. We follow m
closely to Refs.@6,7# and @4#.

Whenb50, the chemical potential can be absorbed in
the length scale. Defining

s̃5sm ~15!

the outer problem becomes

G~u!
du

ds̃
51. ~16!

The shape of the particle is found from Eq.~16!, and it has a
corresponding areaÃ. The area constraint is then satisfied
choosingm appropriately so thatÃ5m2A, giving

m5AÃ/A. ~17!

Put another way, in the absence of the corner energy te
the shape of the crystal is independent of the crystal size
can be found by solving the problem form51, giving a
crystal with areaÃ. The effect ofm is to modify the length
scale, so by choosingm appropriately crystals of differen
area can be constructed. Viewed in this way,m scales in-
versely with the dimensions of the crystal: small partic
correspond tom→` while large particles correspond t
m→01. The special casem50 corresponds to a sem
infinite domain and will be discussed in Sec. V.

The crystal shape determined from integrating Eq.~16! is

s5E
0

u

G~u!du, ~18!

which gives an implicit definition ofu(s). The shape in
(x,y) coordinates can then be determined from integratin

dx

ds
5cos~u!, ~19!

dy

ds
52sin~u!. ~20!

It can be shown@4# that the resulting solutions are equivale
to

x5g8~u!cos~u!1g~u!sin~u!, ~21!

y52g8~u!sin~u!1g~u!cos~u!. ~22!

Construction of the crystal shape depends on the detail
g(u). If G(u)5g1g9>0 then the crystal shape is give
exactly by the above description. IfG(u),0 for some ori-
entations then the surface has orientations with nega
‘‘stiffness.’’ In a dynamic setting, a negative stiffness mak
the evolution problem ill-posed: orientations with negati
01160
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stiffness have Fourier components with temporal grow
rates that diverge as the spatial frequency becomes larg
the equilibrium shape problem, the orientations with ne
tive stiffness generate a crystal shape with nonphys
‘‘ears.’’ See Fig. 1 for an example.

In the case where the crystal has nonphysical ears,
can determine the corner orientations by locating the po
where@x(u),y(u)# crosses itself. Without loss of generalit
we can orient the crystal so thatg(0) is a local maximum
and G(0),0. The corner orientations on either side of t
corner,u5uc

2 ,uc
1 , are given from the two jump condition

@x#u
u

c
2

uc
1

50, ~23!

@y#u
u

c
2

uc
1

50. ~24!

For the special case whereg(u) is symmetric with respect to
the reference orientation, then the corner is symmetric w
orientations given by6uc whereuc.0 is the root of

tan~uc!52
g8~uc!

g~uc!
. ~25!

Cabrera@7# showed that truncating the unphysical ears of
crystal does, in fact, correspond to minimizing the ener
This was done by formulating the solution to the ener
minimization problem in terms of a common-tangent co
vexification of a nonconvex energy function. In this reform
lation, the common tangent spans the range of orientat
which are missing at the corner, and the ears correspon
portions of the energy surface which lie above the comm
tangent and are hence higher energy~see Fig. 2!. To show
this analogy in detail, define the surface slope of the cry
as

q5tan~u!, ~26!

where 2p/2,u,p/2, and define the projected energy o
the x axis as

FIG. 2. ~Color online! Projected surface energyf (q) and com-
mon tangent constructionL(q) for the cos(4u) model with a
50.5.
3-4
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f ~q!5
g~u!

cos~u!
. ~27!

The convexity off (q) is determined by the sign of the su
face stiffness, since

d2f

dq2
5cos3~u!@g~u!1g9~u!#. ~28!

Cabrera showed that ifg1g9.0 for all orientations then
f (q) is convex and the stable equilibrium shape consists
all orientations. Ifg1g9,0 for some orientations, thenf (q)
has regions which are nonconvex. In this case, the energ
minimized by the convex envelope tof (q), in which the
portion of the energy surface containing the nonconvex
gion is replaced by the common tangentL(q). The energy
minimizing shape is then obtained by omitting those orie
tations spanned by the common tangent to the double-
curve ~see Fig. 2!. Thus, the end points of the common ta
gent (q2 andq1) give the slopes at the corner of the crys
associated with minimum energy. Furthermore, since E
~21! and ~22! for the equilibrium shape are equivalent to

x5
d f

dq
, ~29!

y5 f 2q
d f

dq
, ~30!

the end points of the common tangent also correspond to
crossover points marking the ears on the equilibrium sha
To see this, use Eqs.~29! and ~30! in the corner conditions
@Eqs.~23! and ~24!# to obtain

F d f

dqGU
q2

q1

50, ~31!

F f 2q
d f

dqGU
q2

q1

50, ~32!

which are precisely the statement of the conditions for
common tangent tof (q) at q2 ,q1 ; Eq. ~31! requires that
the slope of the tangents at both points is the same, and
~32! requires that the tangents have the samef intercept.
Thus, truncating the unphysical ears of the equilibrium sh
obtained from Eqs.~21! and ~22! is identical to the energy
minimizing shape obtained from the common tangent c
struction in which orientations spanned by the common t
gent are omitted at the corner.

IV. ASYMPTOTIC SOLUTIONS

We now determine how the Wulff shape of Sec. III
modified by the corner energy regularization. Whenb50
the equilibrium crystal shape has sharp corners with a w
defined jump in orientations across the corner. Forb.0 it is
expected that the corner energy term penalizes region
high curvature and so leads to a rounded corner. We s
01160
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here to describe the behavior forb!1, corresponding to the
case of a small corner energy contribution, appropriate w
the dimensions of the crystal are large relative to the rad
of the corner rounding. In physical terms, this means that
atomic dimensions usually associated with the corner
much smaller than the dimensions of the crystal, which
satisfied except for nanoscale crystals.

Inspection of Eq.~9! shows thatb enters with a higher-
order derivative and is thus a singular perturbation. Wh
b50 the surface equation is a first-order differential equ
tion, while for b.0 the equation is a third-order differentia
equation. A reasonable approach then is to treat theb50
problem as the ‘‘outer’’ problem and then look for bounda
layer solutions which round the corners and connect adja
pieces of the outer solution.

A. Corner problem and solution

Without loss of generality, we take the reference orien
tion for u to lie in the range of missing orientations,G(0)
,0. This means the corner orientations are of opposite s
with uc

2,0 anduc
1.0.

We defines50 at the corner of the outer solution an
look for a corner-layer solution fors!1. Letting

s5eS ~33!

and

u~s!5Q̃~S!, ~34!

we find a dominant balance in Eq.~9! whene5b1/2, and the
resulting inner problem is

b1/2m5G~Q̃!
dQ̃

dS
2Fd3Q̃

dS3
1 1

2 S dQ̃

dS
D 3G . ~35!

We then seek an inner solution as an expansion inb1/2,

Q̃~S!5Q~S!1b1/2Q1~S!1bQ2~S!1•••. ~36!

The O(1) problem for the corner shape is the nonline
third-order differential equation

d3Q

dS3
2G~Q!

dQ

dS
1 1

2 S dQ

dSD 3

50. ~37!

Note thatm does not appear in the leading order problem a
so the corner problem is generic in the sense that it is in
pendent ofm ~and hence independent of the crystal size! in
the limit of b→0. For our corner shape we seek a soluti
that rounds the corner and decays to a constant orienta
far away,

Q→Q`
6 asS→6`. ~38!

To match theb50 solution with corner orientationsuc
6 , we

would need the far-field values of the inner solution to
identically the corner orientationsQ`

65uc
6 . Noting that the
3-5
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BRIAN J. SPENCER PHYSICAL REVIEW E69, 011603 ~2004!
inner problem is autonomous, the final boundary condit
specifies the origin for the inner problem,

Q50 at S5S0 . ~39!

In the special case where the surface energy is symm
with respect to the corner, the symmetries can be used in
inner problem. The symmetric version of the inner proble
and its solution are presented in the Appendix.

Because the inner problem is nonlinear, it is not obvio
that there exist solutions which round a corner and appro
constant orientationsQ`

6 far away. Even if solutions of this
type exist, it is also not clear that there is sufficient freed
to choose the orientationsQ`

65uc
6 far away. Despite these

apparent uncertainties, we shall show that this matching
always be accomplished.

In principle, the nonlinear equation~37! is difficult to
solve for arbitraryG(Q). However, the problem can b
transformed by first treatingQ as the independent variab
and defining

K5
dQ

dS
~40!

as the dependent variable as in Ref.@13# to obtain

KF d2

dQ2
~ 1

2 K2!1~ 1
2 K2!2G~Q!G50. ~41!

Excluding the trivial solutionK50 and defining

Q~Q!5 1
2 K2 ~42!

we obtain thelinear problem

d2Q

dQ2
1Q5G~Q!. ~43!

The boundary conditions onQ(Q)5 1
2 K2 now correspond to

the behavior of the curvature. Far away we seek a solutio
which the curvature approaches zero as the orientation
proaches its far-field value. Thus the boundary conditions
Q(Q) are two-point boundary values,

Q50 at Q5Q`
6 . ~44!

However, sinceQ8(Q)5K2(dK/dS), and sincedK/dS→0
asQ→Q`

6 , we also have the additional boundary conditio

dQ

dQ
50 at Q5Q`

6 . ~45!

The transformed problem forQ(Q) now is now linear and
second order, but the four boundary conditions make
problem overdetermined. The extra degrees of freed
needed to satisfy the boundary conditions come from
choice ofQ`

6 . In this new formulation,Q`
6 play the role of

eigenvalues for the inhomogeneous problem. While it see
possible thatQ`

6 might be found to construct the inner sol
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tion, at this stage it seems questionable that these eigen
ues would necessarily match the required corner orientat
uc

6 .
The explicit solution to the linear problem is straightfo

ward to construct. Recalling thatG5g1g9 it is seen that the
particular solution to the differential equation is justQ(Q)
5g(Q) and the general solution is explicitly given by

Q~Q!5g~Q!1A cos~Q!1B sin~Q!, ~46!

whereA andB are constants. The boundary conditions gi

A52@g~Q`
1!cos~Q`

1!2g8~Q1!sin~Q`
1!#, ~47!

B52@g~Q`
1!sin~Q`

1!1g8~Q`
1!cos~Q`

1!#, ~48!

with Q`
1 andQ`

2 determined by

@g~Q!cos~Q!2g8~Q!sin~Q!#u
Q

`
2

Q`
1

50, ~49!

@g~Q!sin~Q!1g8~Q!cos~Q!#u
Q

`
2

Q`
1

50. ~50!

Note that Eqs.~49! and ~50! are precisely those used in th
determination of the corner orientations in the outer proble
Eqs.~21! and~24!, and hence are also equivalent to the co
mon tangent conditions~31! and ~32!. Thus, given that the
outer problem does in fact have a corner, then the existe
of the common-tangent construction for the outer soluti
@Eqs.~31! and~32!#, guarantees existence of the solution f
the eigenvalues in the inner problem@Eqs.~49! and~50!#, as
the conditions determining these eigenvalues are iden
with the conditions determining the common tangent. F
ther, the correspondence of the common-tangent condit
and inner boundary conditions means thatequilibrium solu-
tions which correspond to rounded corners can only ex
between orientations determined by the common-tang
construction.Finally, since the conditions onQ`

6 in the inner
solution anduc

6 are determined by the same equations,
inner solution always matches the Wulff angle of the ou
solution,

Q`
65uc

6 , ~51!

and guarantees matching of the inner and outer solution
then follows that if self-consistent corner orientations a
prescribed for the outer solution, then the resultingQ(Q) is
unique.

OnceQ(Q) is known, we invert to find the curvature

K56A2Q~Q!, ~52!

where we choose the1 sign to obtain the physically relevan
corner solution for a solid lying on the interior of the boun
ary. ForK to be real, we needQ(Q)>0. This is, in fact, true
but not obvious from Eq.~46!. To show that it is true, define
q and f (q) as in Eqs.~26! and~27! replacingu by Q and let
the common tangent tof (q) from q2 to q1 be the line

L~q!5mq1b. ~53!
3-6
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Then identifyingA52b and B52m we can rewrite Eq.
~46! as

Q~Q!5cos~Q!@ f ~q!2L~q!#. ~54!

Since L(q), f (q) in q2,q,q1 by the common-tangen
construction, it follows that

Q~Q!.0 for Q`
2,Q,Q`

1 . ~55!

Therefore real values ofK are also guaranteed.
Finally, the inner solution in terms of (Q,s) can be found

from integration of Eq.~40! to obtain

S5E
0

Q 1

K
dQ1S0 , ~56!

whereS0 determines the local surface coordinate whereQ
50. OnceS(Q) is determined, it can be inverted to fin
Q(S) sincedQ/dS.0 for Q`

2,Q,Q`
1 .

B. Matching of outer and corner solutions

Having constructed the local corner solution we no
verify that it matches the outer Wulff shape. As we ha
confirmed thatQ`

65uc
6 in the preceding section, we expe

matching to be satisfied without difficulty.
Consider matchingQ→Q`

1 as S→`. We define the in-
termediate variable

s* 5s/h, ~57!

whereb1/2!h!1. Expanding the inner solution~56! in the
intermediate variable we find

Q̃5Q`
12Cexp~2ls* h/b1/2!1O~b1/2!, ~58!

whereC is a constant and

l5AQ9~Q`
1! . 0 ~59!

gives exponential decay of the second term in Eq.~58!. Ex-
panding the outer solution~18! in the intermediate variable
we find

u5uc
11h

s*
G~uc

1!
1•••. ~60!

Thus, by virtue of Eq.~51! the inner and outer solution
match at leading order. The matching problem asS→2` is
similar to that forS→1`.

C. Composite solution

The above analysis describes the local behavior ne
single corner. Each corner of the outer solution has its o
inner solution describing the rounding of the corner. Let
corners of the outer solution be denoted byi and the inner
solution at corneri be u inner

i . The leading-order composit
solution is constructed from
01160
a
n
e

u~s!5uouter1(
i

@u inner
i 2umatch

i #, ~61!

whereumatch
i is the matching behavior ofuouter andu inner

i in
the neighborhood of corneri.

D. Summary

The above results describe the leading-order approxi
tion to the equilibrium shape as an expansion in the sm
corner energy parameterb. In this solution, each corner ha
a local solution which rounds the corner between angles
the Wulff shape. The width of this corner-rounding regio
scales withb1/2 and the radius of curvature in this region
of order b1/2, as in Herring’s original estimate@1#. As b
decreases, the scale of the corner rounding decreases b
shape of the corner is preserved. Thus, in the limitb→0 the
equilibrium shape converges to the Wulff shape with infi
tesimal corner rounding.

E. Example

As a specific example, consider the fourfold anisotro
model in Eq. ~14! for a50.5 with a corner energyb
50.01. We apply the above general results to this mode
determine how the corner is rounded by the regularizati
The outer solution has corners centered atu50 and incre-
ments ofp/2 as shown in Fig. 1.

Figure 3 shows the local behavior near the corner au
50. The outer solution has a discontinuous jump inu at the
corner. The composite solution smoothes the jump transi
in u over a transition layer of thicknessO(b1/2).

The equilibrium shape in (x,y) coordinates is obtained
using Eqs.~19! and~20! to integrateu(s) from Fig. 3 to find
the shape in the (x,y) coordinates. The results are shown
Fig. 4. The composite solution rounds the corner in a tran
tion region of thicknessO(b1/2), but away from the corner it

FIG. 3. ~Color online! Asymptotic solution for corner with regu
larization. Shown is the orientationu versus arclength coordinates.
The dashed~blue! curve is the outer solution with a jump in orien
tation at the corner corresponding to the Wulff shape. The s
~red! curve is the composite solution from the asymptotic analy
with a transition layer thickness of orderb1/2. The parameters here
area50.5 andb50.01.
3-7
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precisely matches the outer solution obtained from set
b50.

One feature of the composite solution apparent from F
4 is that the corner rounding causes a decrease in the ar
the enclosed region. Since the corner rounding is ofO(b1/2)
over a width ofO(b1/2) the decrease in area isO(b). As
discussed earlier, the choice ofm controls the overall area o
the crystal via the outer solution. To retain the area of
original outer solution, the value ofm would have to be
adjusted by an orderb correction. Alternatively, if one views
m as prescribed, say for a particle in an environment w
constant chemical potential, then the corner rounding co
sponds to a small dissolution of the corners to maintain c
stant chemical potential on the surface of the crystal.

V. SEMI-INFINITE WEDGE SOLUTION

Here we describe theexactsolution for the equilibrium
shape of a semi-infinite wedge in the presence of the co
regularization. The problem for the semi-infinite wedge
dimensional form is obtained by takingm* 50 in Eq. ~5!
with the boundary conditions,

u→u`
6 as s* →6`, ~62!

u50 at s* 5s
*
0 . ~63!

Defining a length scale asL5(b* /g0) and defining a non-
dimensional arclengthS5s* /L, with Q(S)5u(s* ), we ob-
tain the nondimensional wedge problem

G~Q!
dQ

dS
2Fd3Q

dS3
1 1

2 S dQ

dSD 3G50, ~64!

Q→Q`
6 as S→6` ~65!

Q50 at S5S0 , ~66!

FIG. 4. ~Color online! Asymptotic solution for corner with regu
larization. The dashed~blue! curve is the outer solution with a jum
in orientation at the corner. The solid~red! curve is the composite
solution from the asymptotic analysis with a transition layer thic
ness of orderb1/2. The parameters here area50.5 andb50.01.
01160
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which is exactly the same form as Eqs.~37!–~39! for the
leading-order solution to the inner problem. In Eqs.~40!–
~56! we derive the exact solution to this problem and sh
that the only permissible far-field orientations for the wed
are those given by the common-tangent construction for
Wulff angles. Thus, in the context of the semi-infinite wedg
influence of the regularization determines that the only p
sible wedge solutions are those that correspond to Wulff
entations far away from the corner.

VI. DISCUSSION

The main result of this analysis is that there are no s
prises regarding the effect of the corner regularization te
on the equilibrium shape in two dimensions. For any anis
ropy g(u) which has continuous derivatives up tog9, the
local asymptotic solution rounding the corner can be c
structed when corner regularizationb is small. As the regu-
larization approaches zero, the size of the rounded co
region approaches zero and the equilibrium shape
proaches the Wulff shape. The robustness of the corner r
larization results may also be interpreted as a validation
using the regularization in numerical calculations of t
equilibrium shape; if the regularization is small enough, t
calculated shapes should correspond to the sharp-corne
sults in the absence of the regularization. While the ‘‘no s
prises’’ result holds for the equilibrium problem in two d
mensions, there are important extensions for which the
of the regularization is still not clear.

Generalization to three dimensions. The generalization to
three dimensions is not trivial. What were corners in tw
dimensions become either edges or apex points in three
mensions. The local problem for an apex between three
ferent orientations would require finding an inner solution
the nonlinear partial differential equation which matched
three far-field orientations corresponding to the neighbor
orientations of the apex. While some of the ideas here m
apply to the three-dimensional case, such an extension
significant challenge.

Effect of stress on corner angles. In many applications
elastic energy is an important factor in the determination
the equilibrium crystal shape. For example, in strained so
films, elastic strain causes the formation of ‘‘islands’’ in film
which would be planar in the absence of strain~see, for
example, Ref.@28#!. When the crystal has sharp corners
has been shown that elastic energy should not affect the
missiblemicroscopiccorner angles determined from surfa
energy alone@32,33# ~see also Ref.@34#!. However, whether
this conclusion holds for the regularized model has not b
firmly established. As with the problem without stress, t
issue is that the regularization enters as a singular pertu
tion and the behavior might be different than the results
the absence of the regularization. The only analysis so fa
this question is in the work of Siegelet al. @26#, who numeri-
cally determine the effect of the regularization on corn
angles of voids in the presence of elastic stress. Their
merical results show that in the presence of the regular
tion, elastic stress can make the apparent corner angle d
ent from the Wulff angle, and that this difference persists

-
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the regularization becomes small. These results suggest
there may be a generalization of the analysis presented
in which the influence of elastic energy in the regulariz
corner region alters the permissible matching behaviors
the outer solution, in effect modifying the Wulff angle.

VII. SUMMARY

We have considered the effect of a small corner-ene
regularization on the equilibrium shape of a crystal in tw
dimensions. By taking the corner-energy parameter as sm
we were able to construct a leading-order solution us
matched asymptotic expansions. The ‘‘outer’’ problem cor
sponds to the Wulff shape. The ‘‘inner’’ problem for the co
ner is a nonlinear problem. By transforming the nonline
problem into a linear eigenvalue problem we have sho
that there is only one local solution that rounds a corner,
it necessarily must match the equilibrium Wulff shape.
particular, by formulating the problem in terms of the pr
jected surface energy as a function of the slope, we show
the common tangent construction for minimizing the ene
of the crystal in the absence of the corner energy also pla
critical role in determining the shape of the rounded corn
The main results of the analysis are the following.

~1! We demonstrate that the regularized solutions
proach the classic equilibrium shape as the regulariza
approaches zero.

~2! We give an analytic formulation for the shape of t
corner in the presence of the regularization.

~3! The work validates the use of the corner-energy re
larization in numerical calculations of equilibrium shapes
two dimensions; for sufficiently small regularization th
regularized solutions can be made arbitrarily close to
classic sharp-corner results.

~4! A by-product of the work is an exact solution for th
equilibrium shape of a semi-infinite wedge in the presence
the regularization. Regularized wedge solutions only e
for far-field orientations corresponding to Wulff angles.

Finally, the generalization of these results to include the
fects of elasticity and/or three dimensions was discussed
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APPENDIX A: SYMMETRIC CORNER SOLUTION

Here we present the simplified results for the inner pro
lem when surface energy is symmetric with respect to
corner orientation. The symmetric corner shapeQ(S) is
given by the nonlinear third-order differential equation~37!
as in the nonsymmetric case. The boundary conditions~38!
and ~39! are replaced by

Q→Q` as S→1`, ~A1!

Q50 at S50, ~A2!

d2Q

dS2
50 at S50. ~A3!

Applying the transformation in Eqs.~40!–~42! yields Eq.
~43! with the boundary conditions

dQ

dQ
50 at Q50, ~A4!

Q50 at Q5Q` , ~A5!

dQ

dQ
50 at Q5Q` . ~A6!

Here there are three boundary conditions for the seco
order problem. In analogy with the nonsymmetric case,Q`

plays the role of an eigenvalue. The explicit solution to t
linear problem is given by Eq.~46! with the simplified con-
stants

A52g~Q`!cos~Q`!1g8~Q`!sin~Q`!, ~A7!

B50, ~A8!

and withQ` determined by

g~Q`!sin~Q`!1g8~Q`!cos~Q`!50. ~A9!

Here the eigenvalue condition~A9! is the same as Eq.~25!
that determines the corner orientations for the symme
case. Thus, the same comments made regarding matc
existence and uniqueness of the solution in the nonsymm
ric case apply here. Finally, the curvature and surface sh
can be determined as in Eqs.~52!–~56!.
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